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How do we model financial bubbles?

• We are given a filtered complete probability space:
(Ω,F ,P,F) where F = (Ft)t≥0 satisfies the usual conditions,
and contains at least one Brownian motion

• We let S denote our nonnegative stock price process, &
assume interest rates are zero

• Let Q denote all risk neutral measures Q

• The Fundamental Price of a stock, denoted
S∗ = (S∗t )0≤t≤T , is the conditional expectation

S∗t = EQ{ All cash flows after time t|Ft} (1)

• It is impossible really to know S∗t
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Mathematics to the Rescue

• NFLVR⇒ St ≥ S∗t a.s.

• βt = St − S∗t ≥ 0 is the bubble process

• Theorem[Jarrow, P2, Shimbo] 2010: On a compact time
interval [0,T ] a stock price is undergoing bubble pricing if and
only if the bubble process βt > 0 and βt = St − S∗t is a strict
local martingale under Q ∈ Q

• This theorem builds on work of Lowenstein & Willard, and
Cox & Hobson

• There is a lot of subsequent work by E. Bayraktar, F.
Biagini, H. Föllmer, C. Kardaras, A. Nikeghbali, A.
Roch, M. Schweitzer, and others
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Formation of Bubbles

• We put ourselves in the framework of an incomplete market,
so that there is an infinite number of risk neutral measures

• We model the risky price process using a stochastic volatility
paradigm:

dSt = σ(St , νt)dBt + b(St , νt)dt (2)

• Jarrow, P2, and Shimbo originally proposed regime changes
occurring at stopping times T1 ≤ T2 ≤ . . . , where the
coefficients, or especially the risk neutral measure, changes at
each time Ti

• This was improved in the work of F. Biagini, H. Föllmer,
and S. Nedelcu where they show that a continuous change
of risk neutral measures can let the price process evolve from
a martingale into a strict local martingale, thereby modeling
the birth of a bubble

4 / 31



• Indeed, to make (2) more explicit, let it be of the form

dSt = σ(St , νt)dBt + µ(St , νt)dt

dνt = f (νt)dWt + g(νt)dt (3)

where d [B,W ]t = ρdt

• The idea of BFN is that as the risk neutral measures change,
the drift of ν in (3) changes in distribution in such a way as to
render S a strict local martingale

• This is quite elegant but does not directly connect bubble
birth to economic reasoning

• Finally, they use the classic and renowned 1998 results of
Carlos Sin, where he gives necessary and sufficient conditions
for a solution of an SDE of a specific form to be a strict local
martingale.
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A Possible Cause for Bubbles

• What causes a stock to enter into bubble pricing (ie,
speculative pricing)?

• This is the subject of many papers by economists, such as
José Scheinkman & Harrison Hong

• In work with Aditi Dandapani, a PhD student at Columbia,
we add information to the filtration and find that doing so can
lead to bubbles

• We do this using an initial expansion technique developed by
Jean Jacod in the 1980s

• More precisely, we use the work of PL Lions and M Musiela
on characterizing when solutions of specific types of SDEs are
strict local martingales, which they did without regard to the
theory of bubbles

• The Lions-Musiela results are close to those of Sin, but are
more general
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• Motivated by the possibility of incorrect pricing in financial
markets, Lions & Musiela studied Heston type models of the
form

dSt = StνtdBt

dνt = f (νt)dWt + b(νt)dt (4)

where again d [B,W ]t = ρdt

• We work on a time interval [0,T ] (compact)

• Theorem (Lions & Musiela)

If lim sup
x→∞

ρxf (x) + b(x)

x
<∞ then S is a nonnegative martingale

If lim inf
x→∞

ρxf (x) + b(x)

φ(x)
> 0,

where φ(x) is increasing, positive, smooth, and∫∞
a

1
φ(x)ds <∞, then S is a strict local martingale.
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• We add a countable partition of events, at a time t0 to the
underlying filtration F, to get a larger filtration G

• This changes the semimartingale decompositions in (4) using
(F,P) and we have to remove an extra drift

• We then do a Girsanov transformation to calculate the new
risk neutral measures by removing the extra drift, and we
choose one we call Q, and show that under the right
hypotheses (eg, ρ > 0, and with the correct assumptions on f
and b in (16)) we get that S changes from a martingale under
(F,P) to a strict local martingale under (G,Q)
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• My thesis student at Columbia Aditi Dandapani has proved
the following

• Theorem: Let B and W be two Brownian motions, and let S
and ν satisfy

dSt = StνtdBt (5)

dνt = f (νt)dWt + b(νt)dt

where d [B,W ]t = ρdt. Suppose that f and b are such that

lim sup
x→∞

ρxf (x) + b(x)

x
<∞, and

lim inf
x→∞

(
ρxf (x) + b(x) + εf 2(x) + ε(ρ+ 1)f (x)

)
φ(x)

> 0

Then S in (5) is a (P,F) martingale, and a (Q,G) strict local
martingale.
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• An example of a choice of coefficients that works is f (x) = x
and b(x) = x − ρx2

• A key tool used in the proofs of Carlos Sin, Lions-Musiela, and
also Aditi, is Feller’s test for explosions in the equation for ν

• We also use a relatively new concept of locally having no
arbitrage

• This result can be extended to slightly more general
frameworks, with more general coefficients
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How Life Gets Messy when Data is Involved

• We want to be able to detect, from data, when pricing is in a
bubble

• To begin, we choose a quite specific model

• We assume our stock price S solves an SDE of the form

dSt = σ(St)dBt + b(St , νt)dt; S0 = 1 (6)

• This is an incomplete market setting

• With this framework, under any risk neutral measure Q
equivalent to P, we always get the same equation:

dSt = σ(St)dBt

and this is key
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• It is not realistic perhaps, since we do not have ν in the
volatility, but it might be accurate for short amounts of time

• For equation (6) we have techniques to estimate σ(x)
developed by Florens-Zmirou, and Jacod (2000). We (R.
Jarrow, Y. Kchia, and P2) use a similar technique

• The (non parametric) estimate for σ has two problems:
[a] The estimate is noisy
[b] We can only estimate x 7→ σ(x) for x in the range of St ,
for 0 ≤ t ≤ T
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• Under Q ∈ Q we have that (2) becomes

dSt = σ(St)dBt ; S0 = 1 (7)

• We can use a Theorem of Delbaen and Shirakawa (2002):
Theorem[D& S, 2002]: The process S in (7) is a
nonnegative strict local martingale if and only if

[a]

∫ ε

0

x

σ(x)2
dx = ∞, and

[b]

∫ ∞
ε

x

σ(x)2
dx < ∞

• This theorem was improved later by Kotani and Mijatovic &
Urusov

• Since S∗ is always a martingale, β = S − S∗ is a strict
local martingale (and hence a bubble) if and only if S is
a strict local martingale, which means if and only if we have
(a) & (b) above
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Interpolation & Extrapolation

• We need to smooth σ to get a function to check the
Delbaen-Shirakawa conditions

• We use a Reproducing Kernel Hilbert Space (RKHS)
technique to smooth our estimate of σ

• The RKHS technique smooths the graph of x 7→ σ(x) in a
way analogous to using least squares to fit a line to a cloud of
points; this time we fit a curve

• But this is not enough: To check (a) & (b) we need to know
the behavior of x 7→ σ(x) asymptotically as x →∞

• Now for the part that is “louche:” we extrapolate
x 7→ σ(x) to all of [0,∞) using again an RKHS technique and
an optimization criterion
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Data Enters

• We got tick data for a 13 year period (2000-2013) from the
Wharton Data Research Service (WRDS)

• Tick data is too noisy, so we use an idea of L. Zhang, P.
Myland, and Y. Äıt-Sahalia (2005) to perform a
subsampling that reduces the noise

• We look for when σ behaves such that the integral∫ ∞
ε

x

σ(x)2
dx <∞

which means we have that S is a strict local martingale and
therefore β > 0, and we have a bubble
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• We get a lot of false readings, and instability of the test, so
we smooth the results using a Hidden Markov Model
technique (HMM)

• We get a large number of fleeting bubble readings, so we
impose a 5% filter: The stock price must rise more than 5%
to signify the birth of a bubble, and it must later fall 5% to
signify the death of a bubble, given that the test reads
positive for a bubble

• The imposition of the 5% filter distorts a bit the results, and
they should be interpreted with that in mind

• Using this technique, we can compute the empirical
distribution of the lifetimes of financial bubbles
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The Results
We get a histogram of the results which is well fit by a
generalized gamma distribution

Figure: Histogram of bubble lifetimes
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• We use MLE estimators to discern the parameters
• Next we try goodness of fit tests, using a QQ plot and a

Kolmogorov-Smirnoff test

Figure: Goodness of Fit Graphs
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• The generalized gamma has the density

fG (t) =
λp(λt)pκ−1e−(λt)

p

Γ(κ)
(8)

and p and κ are shape parameters.

• If κ = 1 then the Generalized Gamma reduces to the Weibull.
It also extends the log normal, the exponential, and of course
the gamma distribution.

• We performed an MLE estimate for the parameters, given our
extensive data set. We obtained

(a.) The MLE estimate for p = 0.1291201
(b.) The MLE estimate for λ = (1/3.655156)e−13

(c.) The MLE estimate for κ = 84.74055
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Why do we get the generalized gamma distribution?

• The generalized gamma is a bit esoteric as a distribution,
unless you work in survival analysis, and are interested in the
distribution of lifetimes

• In 1967, JH Lienhard and PL Meyer proposed a derivation of
the generalized gamma distribution from the standpoint of
problems in physics

• We can mimic their derivation, adjusting it to fit the situation
of financial bubbles

• We take the convention that all bubbles begin at time t = 0.
We can achieve this by simply translating the bubble birth
time to t = 0.
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• We uniformly partition R+ into intervals [ti−1, ti ) of length
∆t.

• Next we let Ni denote the number of bubbles still alive in
[ti−1, ti ).

• Let N be the total number of bubbles in our universe. Then

Ni

N
is the proportion of bubbles still alive at time ti−1 (9)
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• We assume that the proportion of bubbles alive decreases
geometrically with time, and we express this as

∞∑
i=1

(
Ni

N

)
tβi = K for constants β > 0,K > 0 (10)

• We also assume the death rate of bubbles alive at time ti−1 is
proportional to a power of ti .

• This gives that the likelihood of bubble death increases
geometrically with age.

• Thus if we let gi denote the number of bubble deaths in
[ti−1, ti ), we assume

gi = Atα−1i (11)

so that gi is proportional to a power of t, and the
proportionality constant is A.
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• We next look for the most probable distribution
satisfying (9),(10) and (11).

• This gets complicated, and here we present only a sketch of
the ideas.

• Let W be the number of ways bubbles can die in [ti−1, ti )
given that they are alive at time ti−1, for all intervals [ti−1, ti )
over [0,∞).

• For example, bubbles can have a dramatic death, or they can
die slowly, with a whimper, and one can give descriptions in
between.

• There can also be varying economic explanations for why
bubbles die, such as disagreements among different agents as
to the state of current conditions; see for example the classic
paper of J. Scheinkman and W. Xiong

• We obtain the following:

W = N!
∞∏
i=1

gNi
i

Ni !
(12)
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• We let Ñi denote the values of Ni that maximize W .

• One can then show

Ñi

N
=

∆t[β
(
βK
α

)−α/β
]

Γ
(
α
β

) tα−1i exp

(
−α
β

tβi
K

)
(13)

• The idea for showing (13) is to maximize log(W ) and to use
that the maximum occurs when

d log(W ) =
∞∑
i=1

[log(Atα−1i − log(Ni )]dNi = 0

and then to use Stirling’s approximation for factorial
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• Our last step is to use this discrete distribution which we have
found to approximate the continuous distribution

• Let τ be a stopping time. The probability that a given bubble
is still alive in the interval [ti−1, ti ) is given by
P(ti−1 ≤ τ < ti ) = Ñi/N.

• Let the sought density f satisfy

Ñi

N
=

∫ ti

ti−1

f (s)ds = ∆tf (ξ)

by the mean value theorem, for some ξ such that ti−1 ≤ ξ ≤ ti
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• Next let ∆t → 0 and use (13) to get

f (t) =

[
β

Γ(α/β)

(
α

βK

)α/β]
tα−1 exp

(
−α
β

tβ

K

)
, for t ≥ 0

(14)
where of course α, β and k are all positive (so that f ≥ 0)

• Finally, if we make the change of variable a = (βK/α)1/β we
obtain

f (t) =

(
β

aαΓ(α/β)

)
ta−1 exp(−(t/a)β) (15)

which is a more customary expression for the density of the
generalized gamma density, and the one originally proposed by
E. W. Stacy, who first proposed it in 1962
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What about stochastic volatility?

• Could this work if we had an equation such as

dSt = σ(St , νt)dBt (16)

under a risk neutral measure Q ∈ Q?

• That is, do we have a test such as the one of
Delbaen-Shirakawa to tell whether or not S is a martingale or
a strict local martingale under Q ∈ Q?

• The short answer is: No.

• However we can still prove some things; what follows is work
with Jean Jacod
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• First we consider a solution of

dXt = σ(Xt)dBt ; X0 = 1, (17)

that satisfies the Delbaen-Shirakawa conditions so that X is a
strict local martingale

• X in (16) is of course also a strong Markov process

• Theorem: X in (16) is such that t 7→ E (Xt) is strictly
decreasing

• Definition: We let S denote the class of functions
s : R2 → R+ such that s(x , v) = 0 if x ≤ 0 and that there
exists a unique strong solution to (16) (then the solution is
necessarily nonnegative, with 0 an absorbing point)
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• Definition: For z ≥ 0, we denote by Σz the class of all Borel
functions σ, vanishing on (−∞, 0], positive on (0,∞),
satisfying the Delbaen-Shirakawa conditions, and such that for
any t > 0 and x , y > z we have pzt (x , y) > 0 for a suitable
version of pzt .

• Proposition: Assuming s ∈ S, the solution S of (16) is a
strict local martingale in the following two situations, where τ
is a stopping time and τ ′ is an Fτ -measurable variable such
that P(τ < τ ′, Sτ > 0) > 0:
(i) The process ν is constant (in time) on the interval [τ, τ ′),
and for each v the function x 7→ s(x , v) belongs to Σ0.
(ii) The process ν takes its values in some set Γ on the
interval [τ, τ ′), and s(x , v) = σ(x) when y ∈ Γ, where σ ∈ Σ0.
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• The main drawback of the previous result is the fact that the
time τ ′ is Fτ -measurable

• We now relax this assumption, and consider a situation
resembling (ii) above with Γ = (α,∞). That is, we still
assume s ∈ S, and also

x > α, v ∈ R ⇒ s(x , v) = σ(x). (18)

• Theorem: Assume (18) with a function σ in Σα ∩ Σ0 and
that the solution S of

dSt = σ(St , νt)dBt ; S0 = 1

satisfies P(supt νt > α) > 0. Then S is a strict local
martingale.
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The End
Thank You for Your Attention

31 / 31


